

Convert the polar equation $r = 3 - 2\cos 2\theta$ to rectangular, and simplify as shown in the website handout. SCORE: /5 PTS r= 3-2(1-2sm20) r= 3-2 (10052 0-51/2 D) r=3-2(x2-42) TALK TO ME IF YOU REPLACED COS 20 WITH 2 COS 0-1

Consider the graph of the polar equation $r = 5 - 3\cos\theta$.

SCORE: ____/6 PTS

Fill in the blanks.

[ii]

[iii]

1-3/<15/21-3/1E.12/3/22

- [i] The shape of the graph is a/an LIMACON WITH DIMPLE!
 - The graph DOS NOT pass through the pole. NO POINTS IF

 does / does not "DIMPLE" MISSING

Find the rectangular coordinates of the

- x intercept(s)
- y intercept(s)

(0,5) (0,-5) (D

[b] Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iii] above.

POLE

NOTE: $(-r, \theta)$, $(-r, \pi - \theta)$ and $(r, \pi + \theta)$ tests do NOT show that the graph is symmetric

[a] Using the information above, and the tests and shortcuts shown in lecture, test if the graph is symmetric over the pole, the polar axis, and/or $\theta = \frac{\pi}{2}$. State your conclusions in the table. NOTE: Run as FEW tests as needed to prove your answers are correct.

axis, and/	or $\theta = \frac{1}{2}$. State your conclusions in the table. NOTE: Kun
AXIST	=4+4sin3(-D) (D)
r	= 4-4 sin 30 12
O== : r	= 4+4sm3(T-0),1
r	$=4+4\sin(3\pi-3\theta)$
~=	= 4+4 (sin3\(\tau\)cos3\(\theta\)- (083\(\ta\)sin3\(\theta\))
r:	= 4+4 sin 30,

Type of symmetry	Conclusion
Over the polar axis	10 COXICLUSION
Over $\theta = \frac{\pi}{2}$	SYMMETRIC
Over the pole	40 CONCLUSION

[b] Based on the results of part [a], what is the minimum interval of the graph you need to plot first (before using reflections to draw the rest of the graph)?

[-== =] (0)

[d]

[c] Find the angles algebraically in the minimum interval in part [b] at which the graph goes through the pole.

[d] Find the value of r (rounded to 1 decimal place) for all common angles in the minimum interval in part [b].

NOTE: You do NOT need to show work, only answers.

GRADED BY ME